## **Chapter 19 - Genetic Engineering**

#### **Learning objectives**

- To define genetic engineering
- To explain the process of genetic engineering, including isolation, cutting, transformation (ligation), introduction of base sequence changes and expression
- To describe three applications of genetic engineering, one in a plant, one in an animal and one in a micro-organism.

**Genetic engineering** is the artificial manipulation or alteration of genes.



The genes we want to use is called the **Target** gene.

We take it from one organism and put it into another organism.

This is a 'cut and paste process'.

It is placed into the second organism and is called **Recombinant DNA**. (The two different DNAs are combined)

The altered organism is called a **GMO** (Genetically Modified Organism).

# **Tools used in Genetic Engineering**



- 1. A source of DNA the target gene from species 1.
- 2. A cloning vector bacterial plasmid (loop).
- 3. Restriction enzymes these cut the DNA in a certain place as genetic scissors.
- 4. DNA Ligase acts as a genetic glue.

# **Restriction Enzymes**

These enzymes will only cut DNA at certain places.

For example one enzyme will only cut where the base sequence of GAATTC occurs.







cut

**Species 2 DNA** 

cut

When the same enzyme is used for both species the DNA will have complementary bases and will recombine easily.

### **DNA** Ligase

An Anabolic enzyme that sticks complementary DNA bases together.



#### The Process

- 1. Isolation target gene and plasmid removed
- 2. Cutting same restriction enzyme cuts both
- 3. Ligation the ends are stuck Human chromosome





R. Cummins

4. Transformation - the uptake of DNA into a cell.





5. Cloning - produce identical copies of the bacterium.

6. Expression - the new DNA makes product.



# 3 Applications

1. Bacterial genes into plants - makes weedkiller-resistant crops



2. Human genes into animals - genes added to produce a protein in the sheep milk to treat emphysema.



3. Human genes into bacteria - genes added to make E.coli bacteria produce human insulin



# **Ethical issues**

GMOs in the environment can cause problems. e.g. some weeds are now weedkiller-resistant.



GMO as a food source - could they cause harm to us?

Will animals suffer from being modified?

Will human zygotes be modified?

