

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2022

Marking Scheme

Biology

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Introduction

The marking scheme is a guide to awarding marks to candidates' answers. It is a concise and summarised guide and is constructed so as to minimise its word content. Examiners must conform to this scheme and may not allow marks for answering outside this scheme. The scheme contains key words, terms and phrases for which candidates may be awarded marks. This does not preclude synonyms or terms or phrases which convey the same meaning as the answer in the marking scheme. Although synonyms are generally acceptable, there may be instances where the scheme demands an exact scientific term or unequivocal response and will not accept alternatives. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable. If it comes to the attention of an examiner that a candidate has presented a valid answer and there is no provision in the scheme for accepting this answer, then the examiner must first consult with his/ her advising examiner before awarding marks. As a general rule, if in doubt about any answer, examiners should consult their advising examiner before awarding marks.

How to use the marking scheme

- Where only one answer is required alternative answers are separated by 'or'.
- Where multiple answers are required each word, term or phrase for which marks are allocated is separated by a solidus (/) from the next word, term or phrase.
- The mark awarded for an answer appears in bold next to the answer, e.g. 3.
- Where there are several parts in the answer to a question, the mark awarded for each part appears in brackets, e.g. 5(4) means that there are five parts to the answer, each part allocated $\mathbf{4}$ marks.
- The answers to subsections of a question may not necessarily be allocated a specific mark; e.g. there may be six parts to a question - (a), (b), (c), (d), (e), (f) and a total of $\mathbf{2 0}$ marks allocated to the question. The marking scheme might be as follows, 2(4)+4(3). This means that the first two correct answers encountered are awarded 4 marks each and each subsequent correct answer is awarded $\mathbf{3}$ marks.
- A word or term that appears in brackets () is not a requirement of the answer, but is used to contextualise the answer or may be an alternative valid answer.

Some examples of the marking process

1. Key words or terms or phrases may be awarded marks, only if presented in the correct context.

Sample question:
Marking scheme states:

Outline how water from the soil reaches the leaf. Concentration gradient / osmosis / root hair / root pressure / cell to cell / xylem / transpiration or evaporation / cohesion (or explained) or adhesion (or capillarity or explained) or tension (or explained).

Anysix 6(3)

Sample answer: Water is drawn up the xylem by osmosis.

Although the candidate has presented two key terms (xylem, osmosis), the statement is incorrect and the candidate can only be awarded $\mathbf{3}$ marks for referring to the movement of water through the xylem.
2. Cancelled answers

The following is an extract from S.63o Instructions to Examiners, 2022 (for subjects being marked online) (section 5.4, p. 19):
"Where a candidate answers a question or part of a question once only and then cancels the answer, you should ignore the cancelling and treat the answer as if the candidate had not cancelled it."

Sample question: What is pollination?
Marking scheme states: Transfer of pollen / from anther / to stigma.

Sample answer: \quad Iransfer of polten by insect to stigma.

The candidate has cancelled the answer and has not made another attempt to answer the question and may be awarded 2(3) marks.

If an answer is cancelled and an alternative version given, the cancellation should be accepted and marks awarded, where merited, for the un-cancelled version only.

If two (or more) un-cancelled versions of an answer are given to the same question or part of a question, both (or all) should be marked and the answer accepted that yields the greater (greatest) number of marks. Points may not, however, be combined from multiple versions to arrive at a manufactured total.
3. Surplus answers: [only in Section A] - a surplus wrong answer cancels the marks awarded for a correct answer.
(i) Sample question 1: The walls of xylem vessels are reinforced with. \qquad
Marking scheme states: Lignin
4 marks
Sample answer: Chitin, lignin
There is a surplus incorrect answer, therefore the candidate scores 4-4 = 0 marks.
Sample answer:
Lignin

The answer, which is correct, has been cancelled by the candidate, but there is no additional or surplus answer, therefore the candidate may be awarded 4 marks.

Sample answer: Lignin, chitin

There is a surplus answer, which is incorrect, but it has been cancelled and as the candidate has given more than one answer (i.e. the candidate is answering the question more than once only), the cancelling can be accepted and $s /$ he may be awarded 4 marks.
(ii) Sample question 2: Name the four elements that are always present in protein.

Marking scheme states: Carbon / hydrogen / oxygen / nitrogen
Sample answer: \quad Carbon, hydrogen, oxygen, nitrogen, calcium
There is a surplus answer, which is incorrect, which cancels one of the correct answers, therefore the candidate is awarded $\mathbf{3 (3)}$ marks.

Sample answer: Carbon, hydrogen, oxygen, calcium

There is no surplus answer - there are three correct answers, and therefore the candidate is awarded 3(3) marks.

Sample answer: Carbon, hydrogen, oxygen, calcium, aluminium

There is a surplus answer, which is incorrect, and cancels one of the three correct answers, therefore the candidate is awarded 2(3) marks.

Sample answer: Carbon, hydrogen, oxygen, nitrogen, aluminium

There is a surplus answer, which is incorrect, but it has been cancelled so the candidate may be awarded 4(3) marks.

In the other sections of the paper (Sections B and C), there may be instances where a correct answer is nullified by the addition of an incorrect answer. This happens when the only acceptable answer is a specific word or term. Each such instance is indicated in the scheme by an asterisk *.

Annotations used in the marking

The scripts were marked by examiners using an online marking platform. The following table illustrates the various annotations (symbols) applied by the examiners when marking the scripts. The meaning and use of each of the annotations applied are also explained in the table. These annotations will be seen on a script if viewed as part of the appeal process. Annotations applied by an examiner will be viewed in red. Scripts that were also marked by an advising examiner will show annotations in a green colour.

Annotation	Meaning
\checkmark	This symbol indicates a correct response / answer.
X	This symbol indicates an incorrect response / answer.
Xc	Surplus incorrect answer. A surplus incorrect answer has cancelled a correct answer.
$\}$	This symbol is placed on all blank pages or part of page to indicate it has been seen by the examiner.
N	This symbol can be used by an examiner to indicate a part of a question answer of significance.
Vi	This symbol is used to indicate a correct response for a label on a diagram. Used in the following questions in 2022: Q11 (b) (i); Q13 (a) (i); Q14 (c) (iii); Q15 (b) (ii); Q15 (c) (ii); Q16 (a) (ii); Q16 (b) (i).
X ${ }^{\text {i }}$	This symbol is used to indicate an incorrect response for a label on a diagram. Used in the following questions in 2022: Q11 (b) (i); Q13 (a) (i); Q14 (c) (iii); Q15 (b) (ii); Q15 (c) (ii); Q16 (a) (ii); Q16 (b) (i).
d	This symbol is used to indicate a correct response for a diagram. Used in the following questions in 2022: Q11 (b) (i); Q13 (a) (i); Q14 (c) (iii); Q15 (c) (ii); Q16 (a) (ii).
Xd	This symbol is used to indicate an incorrect response for a diagram. Used in the following questions in 2022: Q11 (b) (i); Q13 (a) (i); Q14 (c) (iii); Q15 (c) (ii); Q16 (a) (ii).
Λ	This symbol is used to indicate a missing word or phrase.
SEEN	This symbol is used to indicate that the examiner has seen a page or question where there is no response from the candidate.

Question 1

(a) Name the four elements found in all proteins.

Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N)
4
(b) Name an element that is only sometimes found in proteins.

Phosphorous (P) or Sulfur (S)
(c) How many common amino acids are found in proteins?

Twenty (20)
(d) Name any one fibrous protein.

Keratin or myosin or collagen or any other valid example
(e) Give one metabolic role of proteins.

Enzymes or hormones or antibodies or any other valid example or any role described
(f) Give one good source of protein in the diet.

Meat or fish or chicken or nuts or lentils or eggs or dairy or any other valid example

Q1 (a) - (f)	Number of correct responses	1	2	3	4	5	6
	Mark	4	8	12	16	20	20

Question 2

(a) Ecology

The study of the (interactions between) organisms and their environment (or habitat)
(b) Food chain

Sequence of organisms showing transfer of energy from one to the next
(c) Edaphic factor
(Factor relating to) soil
(d) Quantitative study

Measuring the amount (or number) of organisms.
(e) Omnivore
(Organism that) eats plants and animals
(f) Contest competition

Struggle for a resource (in short supply) with one winner or described
(g) Nitrogen fixation
(Conversion of atmospheric) nitrogen (N_{2}) to usable form (or example)

Q2 (a) - (g)	Number of correct responses	1	2	3	4	5	6	7
	Mark	3	6	9	12	15	18	20

Question 3

(a) Name the two chemical components that make up chromosomes.

DNA Protein
(b) Is the karyotype shown above from a female or a male?

Female
(c) Justify the answer you have given at part (b) above. Has two X chromosomes or no Y chromosome
(d) What evidence is shown in the karyotype that this person has the genetic condition Down's syndrome? There is an extra chromosome present or three (copies) of a chromosome 21 or three copies of one of the chromosomes.
(e) Name this other type of mutation.

Gene or point (mutation)
(f) Give one other application of tissue culture

Cancer research or plant breeding or stem cell research or skin grafts or any valid example.

Q3 (a) - (f)	Number of correct responses	1	2	3	4	5	6	7
	Mark	3	6	9	12	15	18	20

Question 4

(a) Explain why the image cannot be produced by a light microscope.
(Mitochondria) are too small (to be seen using a light microscope).
(b) Name one type of animal cell that does not have mitochondria.

Red blood cell (or erythrocyte)
(c) (i) Name and give the location of the stage of aerobic respiration that does not occur in the mitochondrion.

Name: Glycolysis
Location: Cytosol (accept cytoplasm)
(ii) Name the series of chemical reactions, involving acetyl Co. A, which does occur in the mitochondrion.

Krebs' cycle
(iii) State the number of carbon atoms in a molecule of acetyl co-enzyme A.

Two (2)
(d) Sometimes lactic acid is produced during respiration. Describe a condition during which this may occur. Anaerobic (conditions) or oxygen deficiency or described

Q4 (a) - (d)	Number of correct responses	1	2	3	4	5	6	7
	Mark	3	6	9	12	15	18	20

Question 5

(a) Copper (Cu) is one of the common elements present in food.
(b) Response is a characteristic of life.
(c) An animal cell will burst if placed in a concentrated sugar solution.
(d) Macrophages are white blood cells that secrete perforin.
(e) Organs are groups of tissues with a shared function.
(f) Ethene is used to ripen fruit.
(g) All members of the Kingdom Fungi are heterotrophic.

$\mathrm{Q} 5(\mathrm{a})-(\mathrm{g})$	Number of correct responses	1	2	3	4	5	6	7
	Mark	3	6	9	12	15	18	20

Question 6

(a) What conclusion could the student make about lipid digestion based on the graph of results? (Lipid digestion) is faster (higher rate) with both lipase and bile salts (than with lipase alone)
or
(Lipid digestion) is slower (lower rate) with lipase alone.
(b) Name the two products of complete lipid digestion by lipase.

Fatty acids
Glycerol
(c) Name a location in the digestive system where lipase digests lipids.

Duodenum (accept jejunum or ileum or small intestine or stomach)
(d) Suggest an optimum pH for digestion of lipids, in the location you have given at part (c) above.
7-9 (matched to small intestine)
(accept in range of 1-5 matched to stomach)
(e) Describe the action of bile on lipids.

Emulsifies (or described) or increases surface area
(f) Name the structure inside each villus that absorbs the products of lipid digestion.

Lacteal

Q6 (a) - (f)	Number of correct responses	1	2	3	4	5	6	7
	Mark	3	6	9	12	15	18	20

Question 7

(a) Name molecule A.

Nucleic acid or RNA or DNA
(b) Draw an arrow from ' X ' to accurately show the location of an antigen.

Correct arrow

(c) Explain why viruses are described as obligate parasites.

Need a host to replicate (or reproduce) or cannot replicate by themselves
(d) Explain in detail what is meant by the term vaccination.

What it is: Administration of a non-disease-causing (non-living) dose of a pathogen (or antigen or part of a pathogen) or described
What it does: Stimulates production of antibodies or stimulates active immunity or stimulates memory cells
(e) Name one harmful virus other than SARS-CoV-2.

Any valid harmful virus.
(f) Give one example of a beneficial application of a virus.

Genetic engineering (vector) or treat bacterial infection or vaccine production or any other valid answer

Q7 (a) - (f)	Number of correct responses	1	2	3	4	5	6	7
	Mark	3	6	9	12	15	18	20

Question 8

(a) Distinguish between:

Eukaryotic:
Contains a nucleus or organelles enclosed by membranes
Prokaryotic:
Does not contain a nucleus or does not contain organelles enclosed by membranes

| $2 \mathrm{Q}(\mathrm{a})$ | Number of correct responses | 1 | 2 |
| :--- | :--- | :---: | :---: | :---: |
| | Mark | 3 | 6 |

8(3)
(b) (i) Which image, A or B, represents a plant tissue?
*B
(ii) Give a reason for your answer at part (b) (i) above.

Cell wall present or comment on shape of cells (image B more regular shape or image A more irregular shape) or all cells joined (linked) to each other or any valid comment
(iii) Identify structure \mathbf{Z}.
*Nucleus
(iv) When examining cells with a microscope:

1. Name a stain you used.

Methylene blue or iodine or other correct example
2. Give one benefit of using a stain.

Make (cells) more visible or (make cells) easier to see
(v) The image of the cell in \boldsymbol{A} was 2 cm wide. What is the actual width of this cell?
$0.005(\mathrm{~cm})$ or $2 / 400(\mathrm{~cm})$ or $1 / 200(\mathrm{~cm})$ or $5 \times 10^{-3}(\mathrm{~cm})$ (accept other units if correct)
(vi) Image B shows cells at $\times 100$. Describe the steps taken to view these cells at $x 400$.

Select (or use) high power or select (or use) x40 (objective lens)
Use fine focus 3

$8 \quad$| $\mathrm{Q} 8(\mathrm{~b})(\mathrm{i})-(\mathrm{vi})$ | Number of correct responses | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mark | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |

Question 9

(a) (i) What is meant by the term autotrophic?
(An organism that) can make its own food
(ii) Explain why photosynthesis is an anabolic reaction.

Glucose is built up from CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ or (Building up of) small molecules to large molecules or Photosynthesis requires input of energy.

2

Q9 (a) (i) - (ii)	Number of correct responses	1	2
	Mark	3	6

8(3)

(b) Investigation into effect of light intensity or CO_{2} concentration on the rate of photosynthesis
(i) Name a suitable photosynthetic organism you used for this investigation.

Elodea (or Pondweed) or other correctly named organism
(ii) Why was the organism named at part (b) (i) above suitable for this investigation?

Aquatic plant or bubbles can be seen or (concentration or volume of) gas can be measured
(iii) Why was it important to keep other factors constant?

Only one variable or (they) don't affect the rate or the rate is dependent only on the factor being changed or for a fair test or more reliable results or to maintain enzyme activity
(iv) How did you keep the temperature of the organism constant for this activity? Water-bath or described
(v) Explain how you measured the rate of photosynthesis.

Count the number of bubbles or measure volume
per minute (or unit time) or over set period of time 3
(vi) 1. Sketch of expected result at $25^{\circ} \mathrm{C}$ (—),

Increasing line (from zero) (eventually levelling off)
2. Sketch of expected result at $60^{\circ} \mathrm{C}(-----)$,

Line on x axis or very close to x axis

Q9 (b) (i) - (vi)	Number of correct responses	1	2	3	4	5	6	7	8
	Mark	3	6	9	12	15	18	21	24

Question 10

(a) (i) State a location in plants where growth regulators are produced.

Meristem or root tip or shoot tip or any correctly named meristem or location
(ii) How are growth regulators transported around a plant?
(By) diffusion or (through) vascular tissue or phloem or xylem
(accept dissolved in water)
2

\[

\]

8(3)

(b) Effect of IAA growth regulator on a plant tissue.
(i) Name a suitable plant tissue you used in this investigation.

Root or shoot or seed (or named seed)
(ii) Describe how you set up the investigation.

Different concentrations (of IAA) / more than one seed or tissue / fair test or described (e.g. equal volumes added) / control described / named piece of apparatus / leave for suitable time / any other correct practical step
(iii) Describe how you measured the effect of IAA on the plant tissue.

Use ruler (or grid) to measure length (or growth) of tissue
(iv) Describe any one result of your investigation.

More root growth in low concentration or more shoot growth in high concentration
(v) Describe one safety precaution you took in carrying out this investigation.

Use gloves or lab coat or mask or any other correct precaution

Number of correct responses	1	2	3	4	5	6	7	8
Mark	3	6	9	12	15	18	21	24

Question 11

(a) (i) Give one precaution scientists use when working with microorganisms in the laboratory.

Wipe surface with disinfectant (or antiseptic or alcohol or named) or minimal opening of plates or seal plates or flame (or sterilise) equipment or wear gloves or use hand sanitiser or wash hands with soap or keep Bunsen lit (nearby) or dispose of correctly or any other correct precaution (i.e. PPE)
(ii) Explain the terms applied to living organisms.

Asepsis: free of pathogens
Sterility: free of microorganisms
3

Q11 (a) (i) - (ii)	Number of correct responses	1	2	3
	Mark	3	6	9

(b) (i) Drawing of a typical bacterial cell:

Cell wall + cell membrane + indication of nucleic acid

(ii) Describe the main events of endospore formation.

DNA replicates / moves to ends of cell / shrinkage (or water loss) of cytoplasm (or cell) / thick wall forms (or described) / inside original cell / encloses DNA (strand) / (cell) rounds up

Any three
(iii) 1. Give any two examples of harmful bacteria.

Any two correctly named bacteria or named bacterial diseases
2. Bacterial infections can be treated with antibiotics. What is an antibiotic?

A chemical that kills (or inhibits growth of) bacteria
3. State one possible reason why antibiotic resistance has arisen in bacteria. Overuse (misuse) or mutation in bacteria

$7 \quad$| Q11 (b) (ii) - (iii) | Number of correct responses | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mark | 3 | 6 | 9 | 12 | 15 | 18 | 21 |

Question 11 (continued)

(c) (i) Give two factors that affect the growth of microorganisms.

Temperature / oxygen concentration / pH / external solute concentration or water availability / pressure / food availability / presence of antibiotics / presence of waste products
(ii) Explain how one these factors affect growth.

Matching explanation (accept enzyme activity as explanation for temperature, pH , water availability, etc)
(iii) Distinguish between:

Batch: organisms go through all phases of the growth curve (or named phases) or fixed amount of nutrients added at start or bioreactor emptied at end.

$$
\begin{array}{lll}
\text { Continuous flow: } & \begin{array}{l}
\text { organisms maintained in one (log or stationary) growth phase or } \\
\\
\text { nutrients constantly added or products constantly removed. }
\end{array} & \mathbf{3}
\end{array}
$$

(iv) Sketch plot of a growth curve. Label the axes and label the curve with the five phases.

Sketch: All five phases visible on curve
Axes labels: x-axis: Time and y-axis: Population or Number of organisms
Curve labels: Correctly labelled with all five phases in the correct order

Question 12

(a) Explain the following three ecological terms:

Biosphere: Part of the earth where life can exist.
Niche: \quad Role of the organism (or plant or animal) 3
Symbiosis: Relationship between species involving benefit (or described) 3

$3 \quad$| Q12 (a) | Number of correct responses | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| | Mark | 3 | 6 | 9 |

(b) (i) Suggest one reason why dragonflies are such successful predators.

Huge eyes or compound eyes or dazzling aerobatics or opportunistic or ambush or other correct
(ii) Give two benefits for dragonfly populations living near freshwater vegetation. Protection
(iii) Suggest a benefit of the adult and the nymph having different food sources.

Not in competition (for same resource) or greater chance of survival
(iv) What type of ecological relationship exists between birds and dragonflies?

Predator-prey or predation
(v) Suggest one possible effect on the dragonfly population of:

1. a disease affecting swallows: Increases
2. cutting of vegetation on riverbank: Decreases
(vi) Suggest one reason why volunteers are being asked to identify dragonflies.

Conservation or monitor numbers or biodiversity or protect from extinction or monitor effect of climate change or monitor water quality
(vii) What might a volunteer use to help them identify a dragonfly?

Key or compare pictures or charts

$9 \quad$| Q12 (b) (i) - (vii) | Number of correct responses | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mark | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |

(c) (i) Outline the main events of the carbon cycle.

Brief note on role of: Photosynthesis / respiration / decay or decomposition / combustion / carbon sinks / any other valid point
(ii) Explain why the carbon cycle is critical to life on Earth.

For C to be reused by organisms or finite amount of C or so C won't run out or to balance carbon dioxide levels or (photosynthesis is) basis of food chains
(iii) Explain the term 'pollution'.

Any harmful addition to environment
(iv) Give one example of waste management from agriculture or fisheries or forestry.

Any valid example
(v) Other than global warming or pollution, give two factors that can have an effect on human population
War / famine / contraception / disease / any valid example
Any two 2(3)

$8 \quad$| Q12 (c) (i) - (v) | Number of correct responses | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mark | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |

Question 14

(a) (i) In which cell organelle does photosynthesis occur?
*Chloroplast
(ii) Name the pigment essential for photosynthesis.
*Chlorophyll
(iii) Describe one way in which horticulturists can increase plant yields in greenhouses.

Heat to (or keep at) optimum temperature or more light (or described) or use a range of colours of light or more CO_{2} (or described) or hydroponics (or described) or any valid non-photosynthetic reason

3

Q14 (a) (i) - (iii)	Number of correct responses	1	2	3
	Mark	3	6	9

(b) (i) Water is split during stage 1 using the energy in light. What is the name given to this process? *Photolysis
(ii) Identify molecule \boldsymbol{X}, produced as a by-product of the splitting of water.
*Oxygen (or O_{2})
(iii) Identify molecule \boldsymbol{Y}.
*NADPH
(iv) Describe how molecule \boldsymbol{Y} is produced.

Added (or picked up) electrons (e^{-}) 3
Added (or picked up) proton (hydrogen ion or H^{+}) 3
(v) Name stage 2 shown in the diagram.
*Light independent stage (or dark stage or Calvin Cycle) 3
(vi) What does ATP stand for?
*Adenosine triphosphate 3
(vii) What is the role of ATP in stage 2 of photosynthesis as shown in the diagram?

To transfer energy or to carry energy or to release energy
3
(viii) Identify molecule \mathbf{Z}, the end product of stage 2.

Glucose (or formula)
9

Q14 (b) (i) - (viii)	Number of correct responses	1	2	3	4	5	6	7	8	9
	Mark	3	6	9	12	15	18	21	24	27

Question 14 (continued)

(c) (i) Describe two events that happen during prophase.

Nuclear membrane breaks down (dissolves or disappears) / chromosomes become shorter (or visible or thicker) or chromatin condenses / chromosomes (or chromatids) become double stranded / spindle forms
(ii) Describe one event that occurs during metaphase.

Chromosome along equator (middle) or spindles attach to chromosome (or centromere)

3 | Q14 (c) (i) - (ii) | Number of correct responses | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: |
| | Mark | 3 | 6 | 9 |

(iii) Draw a labelled diagram of a cell with a diploid number of four at anaphase of mitosis. Diagram: Eight chromosomes

Chromosomes being pulled apart

2 | Q14 (c) (iii) Diagram: | Number of correct responses | 1 | 2 |
| :---: | :---: | :---: | :---: |
| | Mark | 3 | 6 |

Labels: chromosome / spindle / equator / poles / centromere

3 | Q14 (c) (iii) Labels: | Number of correct responses | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: |
| | Mark | 1 | 2 | 3 |

(iv) Describe how cell division occurs in:

An animal cell: Cleavage furrow forms or described 3
A plant cell: Cell plate forms or described 3

2

Q14 (c) (iv)	Number of correct responses	1	2
	Mark	3	6

Question 16 (c)30
(i) Name one type of synovial joint and give one location in the body where it is found.
Type: Hinge or Ball and socket
Location: Knee or elbow or Hip or shoulder (must match type)
(allow pivot / gliding / sliding with correct location)
(ii) Name the structure \boldsymbol{A} that connect two bones in a joint.
*Ligament
(iii) Name part B:
*Cartilage
Give one function of part B.
Shock absorber or protects bone or reduces friction 3
(iv) Name the structure that connects muscles to bones.
*Tendon
(v) Give one function of compact bone.
Strength or rigidity or shape or structure or support 3
(vi) Name the tissue that fills these spaces in spongy bone.
*(Bone) marrow
Give one function of this tissue.
Makes blood cells or stores fat
(vii) Give one possible cause for either arthritis or osteoporosis.
Arthritis:
Osteoporosis:
Wear and tear (or injury) or genetic
or Hormonal or dietary or genetic
(must mention which condition)
10

Q16 (c) (i) - (vii)	Number of correct responses	1	2	3	4	5	6	7	8	9	10
	Mark	3	6	9	12	15	18	21	24	27	30

Question 16 (d)

(i) State the collective term used to describe the anther and filament of the flower.
*Stamen
(ii) Outline the main events in the development of pollen grains.

Diploid / microspore mother cell / (divides by) meiosis / to produce four haploid (nuclei or cells) or tetrad formed / (divides by) mitosis / pollen grain with two (haploid) nuclei / the generative nucleus / the tube nucleus.

Any three
(iii) What is meant by the term 'pollination'?

Transfer of pollen from the anther to the stigma
(iv) Name two methods by which pollination can occur.

Wind / insect (animal) / water / self
Any two 2(3)
(v) Describe the main events that occur immediately after pollination.

Pollen grain germinates (develops) / produces (pollen) tube / The tube nucleus digests through the style (pollen tube grows through the style) / reaches the ovary / generative nucleus divides by mitosis / to form two (haploid) male nuclei (gametes) / enter the embryo sac (megaspore) / one (haploid) male nucleus fuses with the (haploid) egg to form the diploid zygote / the second (haploid) male nucleus fuses with the two haploid polar nuclei to form a triploid endosperm.

Q16 (d) (i) - (v)	Number of correct responses	1	2	3	4	5	6	7	8	9	10
	Mark	3	6	9	12	15	18	21	24	27	30

Question 17 (a)

(i) Name the two scientists credited with developing the theory of evolution by natural selection. Darwin
Wallace 3
(ii) Explain the three underlined terms.

Evolution: Genetic changes in populations in response to environmental conditions.
Species: (Group of) organisms capable of reproducing (or breeding) to produce fertile offspring.

Inherited: (Passed from parents) to offspring using genes.
(iii) Explain how meiosis contributes to variation.

It rearranges genetic material (or described) or it produces non-identical cells (accept crossing over)
(iv) Describe three points put forward in the theory of natural selection, other than the one described.

High reproductive rates / competition (or a struggle for survival) / those with the more adaptive characteristics survive (or survival of the fittest) / the others are eliminated (or die out) / the survivors reproduce (or breed) / the genes of the most successful are passed on to the next generation / populations becomes better adapted to their environment with each generation.

Any three
(v) Give one piece of evidence that supports the theory of natural selection.

Fossils or comparative embryology or comparative anatomy or other correct answer

Q17 (a) (i) - (v)	Number of correct responses	1	2	3	4	5	6	7	8	9	10
	Mark	3	6	9	12	15	18	21	24	27	30

Question 17 (b)

(i) Give two roles of the placenta.

Movement of food from mother to foetus or movement of wastes from foetus to mother / endocrine gland or production of hormones (or named) / prevent bloods (of foetus and mother) from mixing
(ii) Give an outline description of the birth process, including the role of hormones.

Change in level of (named) hormone
Mucus plug falls out (or 'the show') / amniotic fluid expelled (waters break) / labour or uterine contractions / cervix dilates / baby is pushed out / afterbirth (delivery of placenta) / umbilical cord is cut
(iii) State one method of birth control.

Condom or the (contraceptive) pill or IUD or natural or mechanical or chemical or hormonal or surgical or any valid example
(iv) Name the hormone responsible for milk production.
*Prolactin
(v) State two biological benefits of breastfeeding.

Balanced supply of nutrients / supplies antibodies (passive immunity) / correct temperature / any correct benefit

Any two 2(3)

10

Q17 (b) (i) - (v)	Number of correct responses	1	2	3	4	5	6	7	8	9	10
	Mark	3	6	9	12	15	18	21	24	27	30

Question 17 (c)

(i) State the location where food is usually stored in a:

Monocotyledonous seed: *Endosperm 3

Dicotyledonous seed: Cotyledon (accept seed leaf) 3
(ii) Describe how seeds contribute to the formation of fruit.

Produce growth regulators or named
(iii) Name one part of a flower from which a fruit may develop.
Ovary (accept receptacle)
(iv) Outline one role of genetics in fruit production.

Seedless fruits or more advantageous traits (or described)
(v) Give two advantages of seed dispersal.

Reduces competition / reduces overcrowding / allows plants to colonise new areas / better chance of survival

Any two
(vi) Describe the roles of the following in germination:

Digestion: Produce soluble nutrients or make nutrients available 3
Respiration: Release of energy from food 3
(vii) Give one example of asexual reproduction in flowering plants.

Any named example
10

Q17 (c) (i) - (vii)	Number of correct responses	1	2	3	4	5	6	7	8	9	10
	Mark	3	6	9	12	15	18	21	24	27	30

Question 17 (d)

(i) Name the period of the heart cycle when the cardiac muscle of the heart is:

1. Contracting: *Systole 3
2. Not contracting: *Diastole
(ii) In which diagram, X, Y or Z, are the ventricles contracting?
*Z
Explain how you know the ventricles are contracting
(Ventricle) volumes are reduced or semilunar valves are open or AV valves (or bicuspid or tricuspid) are closed or blood is flowing into arteries (or out of heart)
(iii) State the location of the sinoatrial (SA) in the heart.
(Wall of) right atrium
(iv) There is a two-circuit circulatory system in humans. Name the circuit to which:
3. The right ventricle pumps blood: *Pulmonary (circuit)
4. The left ventricle pumps blood: *Systemic (circuit) $\mathbf{3}$
(v) What causes these sounds?

Valves closing
(vi) What is the function of the coronary (cardiac) artery?

To supply heart (cardiac) muscle (or tissue or cells) with blood
(vii) Describe the effect on the circulatory system of either one of the following: Smoking

Exercise

Increase heart rate or increase blood pressure or any valid effect

Increase heart rate or strengthens heart muscle or any valid effect

Q17 (d) (i) - (vii)	Number of correct responses	1	2	3	4	5	6	7	8	9	10
	Mark	3	6	9	12	15	18	21	24	27	30

BLANK PAGE

BLANK PAGE

